Monday 16 November 2020

As Nigeria Establishes Centre For Artificial Intelligence And Robotics



By Adewole Kehinde

As part of the Federal Government commitment to galvanize practical initiatives that would enhance the implementation of the National Digital Economy Policy and Strategy especially in the areas of innovations, digital jobs and wealth creation, the Minister of Communications and Digital Economy, Dr Isa Pantami commissioned the National Centre for Artificial Intelligence And Robotics and maintained that the centre is central to National Digital Economy Policy for a Digital Nigeria and is in alignment with the mandate of President Muhammadu Buhari on job creation and economic diversification.

The Centre, which was built by National Information Technology Development Agency, (NITDA) is to provide a robust platform for achieving a National Digital Economy for Nigeria through digital literacy and skill development, innovation in emerging technologies such as Artificial Intelligence, (AI), Internet of Things, (IoT) Innovation driven Research and Development as well as harnessing the power of Discovery, Incubation And Acceleration (DIA) would support innovators in making their businesses more competitive through speeding up development and uptake of digital innovations.

Let me start with definition of Robotics. It is an interdisciplinary research area at the interface of computer science and engineering. Robotics involves design, construction, operation and use of robots. The goal of robotics is to design intelligent machines that can help and assist humans in their day-to-day lives and keep everyone safe. Robotics draws on the achievement of information engineering, computer engineering, mechanical engineering, electronic engineering and others.

Robotics develops machines that can substitute for humans and replicate human actions. Robots can be used in many situations and for many purposes, but today many are used in dangerous environments (including inspection of radioactive materials, bomb detection and deactivation), manufacturing processes, or where humans cannot survive (e.g. in space, underwater, in high heat, and clean up and containment of hazardous materials and radiation). Robots can take on any form but some are made to resemble humans in appearance. This is said to help in the acceptance of a robot in certain replicative behaviors usually performed by people. Such robots attempt to replicate walking, lifting, speech, cognition, or any other human activity. Many of today's robots are inspired by nature, contributing to the field of bio-inspired robotics.

The concept of creating robots that can operate autonomously dates back to classical times, but research into the functionality and potential uses of robots did not grow substantially until the 20th century. Throughout history, it has been frequently assumed by various scholars, inventors, engineers, and technicians that robots will one day be able to mimic human behavior and manage tasks in a human-like fashion. Today, robotics is a rapidly growing field, as technological advances continue; researching, designing, and building new robots serve various practical purposes, whether domestically, commercially, or militarily. Many robots are built to do jobs that are hazardous to people, such as defusing bombs, finding survivors in unstable ruins, and exploring mines and shipwrecks. Robotics is also used in STEM (Science, Technology, Engineering, and Mathematics) as a teaching aid.

Robotics is a branch of engineering that involves the conception, design, manufacture, and operation of robots. This field overlaps with computer engineering, computer science (especially artificial intelligence), electronics, mechatronics, mechanical, nanotechnology and bioengineering.

Artificial intelligence is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals. Colloquially, the term "artificial intelligence" is often used to describe machines (or computers) that mimic "cognitive" functions that humans associate with the human mind, such as "learning" and "problem solving".

As machines become increasingly capable, tasks considered to require "intelligence" are often removed from the definition of AI, a phenomenon known as the AI effect. Modern machine capabilities generally classified as AI include successfully understanding human speech, competing at the highest level in strategic game systems, autonomously operating cars, intelligent routing in content delivery networks, and military simulations.

Artificial intelligence was founded as an academic discipline in 1955, and in the years since has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success and renewed funding. After AlphaGo successfully defeated a professional Go player in 2015, artificial intelligence once again attracted widespread global attention. For most of its history, AI research has been divided into sub-fields that often fail to communicate with each other. These sub-fields are based on technical considerations, such as particular goals (e.g. "robotics" or "machine learning"), the use of particular tools ("logic" or artificial neural networks), or deep philosophical differences. Sub-fields have also been based on social factors (particular institutions or the work of particular researchers).

The traditional problems or goals of AI research include reasoning, knowledge representation, planning, learning, natural language processing, perception and the ability to move and manipulate objects.  General intelligence is among the field's long-term goals. Approaches include statistical methods, computational intelligence, and traditional symbolic AI. Many tools are used in AI, including versions of search and mathematical optimization, artificial neural networks, and methods based on statistics, probability and economics. The AI field draws upon computer science, information engineering, mathematics, psychology, linguistics, philosophy, and many other fields.

The field was founded on the assumption that human intelligence "can be so precisely described that a machine can be made to simulate it". This raises philosophical arguments about the mind and the ethics of creating artificial beings endowed with human-like intelligence. These issues have been explored by myth, fiction and philosophy since antiquity. Some people also consider AI to be a danger to humanity if it progresses unabated. Others believe that AI, unlike previous technological revolutions, will create a risk of mass unemployment.

In the twenty-first century, AI techniques have experienced a resurgence following concurrent advances in computer power, large amounts of data, and theoretical understanding; and AI techniques have become an essential part of the technology industry, helping to solve many challenging problems in computer science, software engineering and operations research.

Challenges Of Artificial Intelligence

The cognitive capabilities of current architectures are very limited; using only a simplified version of what intelligence is really capable of. For instance, the human mind has come up with ways to reason beyond measure and logical explanations to different occurrences in life. What would have been otherwise straightforward, an equivalently difficult problem may be challenging to solve computationally as opposed to using the human mind. This gives rise to two classes of models: structuralist and functionalist. The structural models aim to loosely mimic the basic intelligence operations of the mind such as reasoning and logic. The functional model refers to the correlating data to its computed counterpart.

The overall research goal of artificial intelligence is to create technology that allows computers and machines to function in an intelligent manner. The general problem of simulating (or creating) intelligence has been broken down into sub-problems. These consist of particular traits or capabilities that researchers expect an intelligent system to display. The traits described below have received the most attention.

Reasoning, Problem Solving

Early researchers developed algorithms that imitated step-by-step reasoning that humans use when they solve puzzles or make logical deductions. By the late 1980s and 1990s, AI research had developed methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.

These algorithms proved to be insufficient for solving large reasoning problems because they experienced a "combinatorial explosion": they became exponentially slower as the problems grew larger. Even humans rarely use the step-by-step deduction that early AI research could model. They solve most of their problems using fast, intuitive judgments.

Knowledge Representation

Knowledge representation and knowledge engineering are central to classical AI research. Some "expert systems" attempt to gather explicit knowledge possessed by experts in some narrow domain. In addition, some projects attempt to gather the "commonsense knowledge" known to the average person into a database containing extensive knowledge about the world. Among the things a comprehensive commonsense knowledge base would contain are: objects, properties, categories and relations between objects; situations, events, states and time; causes and effects; knowledge about knowledge (what we know about what other people know); and many other, less well researched domains.

A representation of "what exists" is ontology: the set of objects, relations, concepts, and properties formally described so that software agents can interpret them. The semantics of these are captured as description logic concepts, roles, and individuals, and typically implemented as classes, properties, and individuals in the Web Ontology Language.

The most general ontologies are called upper ontologies, which attempt to provide a foundation for all other knowledge[104] by acting as mediators between domain ontologies that cover specific knowledge about a particular knowledge domain (field of interest or area of concern). Such formal knowledge representations can be used in content-based indexing and retrieval, scene interpretation, clinical decision support, knowledge discovery (mining "interesting" and actionable inferences from large databases), and other areas.

Among The Most Difficult Problems In Knowledge Representations Are:

Default reasoning and the qualification problem

Many of the things people know take the form of "working assumptions". For example, if a bird comes up in conversation, people typically picture a fist-sized animal that sings and flies. None of these things are true about all birds. John McCarthy identified this problem in 1969 as the qualification problem: for any commonsense rule that AI researchers care to represent, there tend to be a huge number of exceptions. Almost nothing is simply true or false in the way that abstract logic requires. AI research has explored a number of solutions to this problem.

Breadth of commonsense knowledge

The number of atomic facts that the average person knows is very large. Research projects that attempt to build a complete knowledge base of commonsense knowledge require enormous amounts of laborious ontological engineering - they must be built, by hand, one complicated concept at a time.

Subsymbolic form of some commonsense knowledge

Much of what people know is not represented as "facts" or "statements" that they could express verbally. For example, a chess master will avoid a particular chess position because it "feels too exposed" or an art critic can take one look at a statue and realize that it is a fake. These are non-conscious and sub-symbolic intuitions or tendencies in the human brain. Knowledge like this informs, supports and provides a context for symbolic, conscious knowledge. As with the related problem of sub-symbolic reasoning, it is hoped that situated AI, computational intelligence, or statistical AI will provide ways to represent this knowledge.

Planning

A hierarchical control system is a form of control system in which a set of devices and governing software is arranged in a hierarchy.

Automated Planning and Scheduling

Intelligent agents must be able to set goals and achieve them. They need a way to visualize the future - a representation of the state of the world and be able to make predictions about how their actions will change it - and be able to make choices that maximize the utility (or "value") of available choices.

In classical planning problems, the agent can assume that it is the only system acting in the world, allowing the agent to be certain of the consequences of its actions. However, if the agent is not the only actor, then it requires that the agent can reason under uncertainty. This calls for an agent that can not only assess its environment and make predictions but also evaluate its predictions and adapt based on its assessment.

Multi-agent planning uses the cooperation and competition of many agents to achieve a given goal. Emergent behavior such as this is used by evolutionary algorithms and swarm intelligence.[120]

Learning

Machine learning (ML), a fundamental concept of AI research since the field's inception, is the study of computer algorithms that improve automatically through experience.

Unsupervised learning is the ability to find patterns in a stream of input, without requiring a human to label the inputs first. Supervised learning includes both classification and numerical regression, which requires a human to label the input data first.

Classification is used to determine what category something belongs in, and occurs after a program sees a number of examples of things from several categories. Regression is the attempt to produce a function that describes the relationship between inputs and outputs and predicts how the outputs should change as the inputs change. Both classifiers and regression learners can be viewed as "function approximators" trying to learn an unknown (possibly implicit) function; for example, a spam classifier can be viewed as learning a function that maps from the text of an email to one of two categories, "spam" or "not spam".

Computational learning theory can assess learners by computational complexity, by sample complexity (how much data is required), or by other notions of optimization. In reinforcement learning the agent is rewarded for good responses and punished for bad ones. The agent uses this sequence of rewards and punishments to form a strategy for operating in its problem space.

Natural Language Processing

Natural language processing allows machines to read and understand human language. A sufficiently powerful natural language processing system would enable natural-language user interfaces and the acquisition of knowledge directly from human-written sources, such as newswire texts. Some straightforward applications of natural language processing include information retrieval, text mining, question answering and machine translation.

 Many current approaches use word co-occurrence frequencies to construct syntactic representations of text. "Keyword spotting" strategies for search are popular and scalable but dumb; a search query for "dog" might only match documents with the literal word "dog" and miss a document with the word "poodle". "Lexical affinity" strategies use the occurrence of words such as "accident" to assess the sentiment of a document.

Modern statistical NLP approaches can combine all these strategies as well as others, and often achieve acceptable accuracy at the page or paragraph level. Beyond semantic NLP, the ultimate goal of "narrative" NLP is to embody a full understanding of commonsense reasoning. By 2019, transformer-based deep learning architectures could generate coherent text.

Perception

Feature detection helps AI compose informative abstract structures out of raw data.

Machine perception is the ability to use input from sensors (such as cameras (visible spectrum or infrared), microphones, wireless signals, and active lidar, sonar, radar, and tactile sensors) to deduce aspects of the world. Applications include speech recognition, facial recognition, and object recognition. Computer vision is the ability to analyze visual input. Such input is usually ambiguous; a giant, fifty-meter-tall pedestrian far away may produce the same pixels as a nearby normal-sized pedestrian, requiring the AI to judge the relative likelihood and reasonableness of different interpretations, for example by using its "object model" to assess that fifty-meter pedestrians do not exist.

Motion And Manipulation

AI is heavily used in robotics. Advanced robotic arms and other industrial robots, widely used in modern factories, can learn from experience how to move efficiently despite the presence of friction and gear slippage.

A modern mobile robot, when given a small, static, and visible environment, can easily determine its location and map its environment; however, dynamic environments, such as (in endoscopy) the interior of a patient's breathing body, pose a greater challenge. Motion planning is the process of breaking down a movement task into "primitives" such as individual joint movements. Such movement often involves compliant motion, a process where movement requires maintaining physical contact with an object. Moravec's paradox generalizes that low-level sensorimotor skills that humans take for granted are, counterintuitively, difficult to program into a robot; the paradox is named after Hans Moravec, who stated in 1988 that "it is comparatively easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old when it comes to perception and mobility".

This is attributed to the fact that, unlike checkers, physical dexterity has been a direct target of natural selection for millions of years.

Social Intelligence

Moravec's paradox can be extended to many forms of social intelligence. Distributed multi-agent coordination of autonomous vehicles remains a difficult problem. Affective computing is an interdisciplinary umbrella that comprises systems which recognize, interpret, process, or simulate human affects.

Moderate successes related to affective computing include textual sentiment analysis and, more recently, multimodal affect analysis (see multimodal sentiment analysis), wherein AI classifies the affects displayed by a videotaped subject.

In the long run, social skills and an understanding of human emotion and game theory would be valuable to a social agent. The ability to predict the actions of others by understanding their motives and emotional states would allow an agent to make better decisions. Some computer systems mimic human emotion and expressions to appear more sensitive to the emotional dynamics of human interaction, or to otherwise facilitate human - computer interaction. Similarly, some virtual assistants are programmed to speak conversationally or even to banter humorously; this tends to give naïve users an unrealistic conception of how intelligent existing computer agents actually are.

General Intelligence

Historically, projects such as the Cyc knowledge base (1984–) and the massive Japanese Fifth Generation Computer Systems initiative (1982–1992) attempted to cover the breadth of human cognition. These early projects failed to escape the limitations of non-quantitative symbolic logic models and, in retrospect, greatly underestimated the difficulty of cross-domain AI. Nowadays, most current AI researchers work instead on tractable "narrow AI" applications (such as medical diagnosis or automobile navigation).

Many researchers predict that such "narrow AI" work in different individual domains will eventually be incorporated into a machine with artificial general intelligence (AGI), combining most of the narrow skills mentioned in this article and at some point even exceeding human ability in most or all these areas. Many advances have general, cross-domain significance. One high-profile example is that DeepMind in the 2010s developed a "generalized artificial intelligence" that could learn many diverse Atari games on its own, and later developed a variant of the system which succeeds at sequential learning.

Besides transfer learning, hypothetical AGI breakthroughs could include the development of reflective architectures that can engage in decision-theoretic metareasoning, and figuring out how to "slurp up" a comprehensive knowledge base from the entire unstructured Web.[9] Some argue that some kind of (currently-undiscovered) conceptually straightforward, but mathematically difficult, "Master Algorithm" could lead to AGI.

Finally, a few "emergent" approaches look to simulating human intelligence extremely closely, and believe that anthropomorphic features like an artificial brain or simulated child development may someday reach a critical point where general intelligence emerges.

Many of the problems in this article may also require general intelligence, if machines are to solve the problems as well as people do. For example, even specific straightforward tasks, like machine translation, require that a machine read and write in both languages (NLP), follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's original intent (social intelligence). A problem like machine translation is considered "AI-complete", because all of these problems need to be solved simultaneously in order to reach human-level machine performance.

Approaches

No established unifying theory or paradigm guides AI research. Researchers disagree about many issues. A few of the most long-standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence by studying psychology or neurobiology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering? Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of unrelated problems?

Cybernetics and brain simulation

In the 1940s and 1950s, a number of researchers explored the connection between neurobiology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England. By 1960, this approach was largely abandoned, although elements of it would be revived in the 1980s.

Symbolic

When access to digital computers became possible in the mid-1950s, AI research began to explore the possibility that human intelligence could be reduced to symbol manipulation. The research was centered in three institutions: Carnegie Mellon University, Stanford, and MIT, and as described below, each one developed its own style of research. John Haugeland named these symbolic approaches to AI "good old fashioned AI" or "GOFAI".

During the 1960s, symbolic approaches had achieved great success at simulating high-level "thinking" in small demonstration programs. Approaches based on cybernetics or artificial neural networks were abandoned or pushed into the background. Researchers in the 1960s and the 1970s were convinced that symbolic approaches would eventually succeed in creating a machine with artificial general intelligence and considered this the goal of their field.

Cognitive simulation

Economist Herbert Simon and Allen Newell studied human problem-solving skills and attempted to formalize them, and their work laid the foundations of the field of artificial intelligence, as well as cognitive science, operations research and management science. Their research team used the results of psychological experiments to develop programs that simulated the techniques that people used to solve problems. This tradition, centered at Carnegie Mellon University would eventually culminate in the development of the Soar architecture in the middle 1980s.

Logic-based

Unlike Simon and Newell, John McCarthy felt that machines did not need to simulate human thought, but should instead try to find the essence of abstract reasoning and problem-solving, regardless of whether people used the same algorithms. His laboratory at Stanford (SAIL) focused on using formal logic to solve a wide variety of problems, including knowledge representation, planning and learning. Logic was also the focus of the work at the University of Edinburgh and elsewhere in Europe which led to the development of the programming language Prolog and the science of logic programming.

Anti-logic or scruffy

Researchers at MIT (such as Marvin Minsky and Seymour Papert) found that solving difficult problems in vision and natural language processing required ad hoc solutions—they argued that no simple and general principle (like logic) would capture all the aspects of intelligent behavior. Roger Schank described their "anti-logic" approaches as "scruffy" (as opposed to the "neat" paradigms at CMU and Stanford). Commonsense knowledge bases (such as Doug Lenat's Cyc) are an example of "scruffy" AI, since they must be built by hand, one complicated concept at a time.

Knowledge-based

When computers with large memories became available around 1970, researchers from all three traditions began to build knowledge into AI applications. This "knowledge revolution" led to the development and deployment of expert systems (introduced by Edward Feigenbaum), the first truly successful form of AI software.

A key component of the system architecture for all expert systems is the knowledge base, which stores facts and rules that illustrate AI. The knowledge revolution was also driven by the realization that enormous amounts of knowledge would be required by many simple AI applications.

Sub-symbolic

By the 1980s, progress in symbolic AI seemed to stall and many believed that symbolic systems would never be able to imitate all the processes of human cognition, especially perception, robotics, learning and pattern recognition. A number of researchers began to look into "sub-symbolic" approaches to specific AI problems. Sub-symbolic methods manage to approach intelligence without specific representations of knowledge.

Embodied intelligence

This includes embodied, situated, behavior-based, and nouvelle AI. Researchers from the related field of robotics, such as Rodney Brooks, rejected symbolic AI and focused on the basic engineering problems that would allow robots to move and survive. Their work revived the non-symbolic point of view of the early cybernetics researchers of the 1950s and reintroduced the use of control theory in AI. This coincided with the development of the embodied mind thesis in the related field of cognitive science: the idea that aspects of the body (such as movement, perception and visualization) are required for higher intelligence.

Within developmental robotics, developmental learning approaches are elaborated upon to allow robots to accumulate repertoires of novel skills through autonomous self-exploration, social interaction with human teachers, and the use of guidance mechanisms (active learning, maturation, motor synergies, etc.).

Computational intelligence and soft computing

Interest in neural networks and "connectionism" was revived by David Rumelhart and others in the middle of the 1980s.  Artificial neural networks are an example of soft computing - they are solutions to problems which cannot be solved with complete logical certainty, and where an approximate solution is often sufficient. Other soft computing approaches to AI include fuzzy systems, Grey system theory, evolutionary computation and many statistical tools. The application of soft computing to AI is studied collectively by the emerging discipline of computational intelligence.

Statistical

Much of traditional GOFAI got bogged down on ad hoc patches to symbolic computation that worked on their own toy models but failed to generalize to real-world results. However, around the 1990s, AI researchers adopted sophisticated mathematical tools, such as hidden Markov models (HMM), information theory, and normative Bayesian decision theory to compare or to unify competing architectures. The shared mathematical language permitted a high level of collaboration with more established fields (like mathematics, economics or operations research).

Compared with GOFAI, new "statistical learning" techniques such as HMM and neural networks were gaining higher levels of accuracy in many practical domains such as data mining, without necessarily acquiring a semantic understanding of the datasets. The increased successes with real-world data led to increasing emphasis on comparing different approaches against shared test data to see which approach performed best in a broader context than that provided by idiosyncratic toy models; AI research was becoming more scientific. Nowadays results of experiments are often rigorously measurable, and are sometimes (with difficulty) reproducible.

Different statistical learning techniques have different limitations; for example, basic HMM cannot model the infinite possible combinations of natural language. Critics note that the shift from GOFAI to statistical learning is often also a shift away from explainable AI. In AGI research, some scholars caution against over-reliance on statistical learning, and argue that continuing research into GOFAI will still be necessary to attain general intelligence.

Integrating the Approaches

An intelligent agent is a system that perceives its environment and takes actions that maximize its chances of success. The simplest intelligent agents are programs that solve specific problems. More complicated agents include human beings and organizations of human beings (such as firms). The paradigm allows researchers to directly compare or even combine different approaches to isolated problems, by asking which agent is best at maximizing a given "goal function".

An agent that solves a specific problem can use any approach that works - some agents are symbolic and logical, some are sub-symbolic artificial neural networks and others may use new approaches. The paradigm also gives researchers a common language to communicate with other fields - such as decision theory and economics - that also use concepts of abstract agents. Building a complete agent requires researchers to address realistic problems of integration; for example, because sensory systems give uncertain information about the environment, planning systems must be able to function in the presence of uncertainty. The intelligent agent paradigm became widely accepted during the 1990s.

Agent Architectures and Cognitive Architectures

Researchers have designed systems to build intelligent systems out of interacting intelligent agents in a multi-agent system. A hierarchical control system provides a bridge between sub-symbolic AI at its lowest, reactive levels and traditional symbolic AI at its highest levels, where relaxed time constraints permit planning and world modeling. Some cognitive architectures are custom-built to solve a narrow problem; others, such as Soar, are designed to mimic human cognition and to provide insight into general intelligence. Modern extensions of Soar are hybrid intelligent systems that include both symbolic and sub-symbolic components.


Additional information sourced from Wikipedia

1 comment:

  1. Interesting blog, very useful to all blogger specially for me. Please take time to visit also this.

    UAS

    UAV

    ReplyDelete